# Till Wagner's python version: # # Reference: "How Model Complexity Influences Sea Ice Stability", # T.J.W. Wagner & I. Eisenman, J Clim (2015) # # WE15_EBM_fast.m: # This code describes the EBM as discussed in Sec. 2b of the article above, # hereafter WE15. Here we use central difference spatial integration and # Implicit Euler time stepping. # # The code WE15_EBM_simple.m, on the other hand, uses a simpler formulation # of the diffusion operator and time stepping with Matlab's ode45. # # Parameters are as described in WE15, table 1. Note that we do not include # ocean heat flux convergence or a seasonal cylce in the forcing # (equivalent to S_1 = F_b = 0 in WE15). This code uses an ice albedo when # T<0 (WE15 instead uses the condition E<0, which is appropriate for the # inclusion of a seasonal cycle in ice thickness). In this code, we define # T = Ts - Tm, where Ts is the surface temperature and Tm the melting point # (WE15, by contrast, defines T = Ts). # # Till Wagner & Ian Eisenman, Mar 15 # tjwagner@ucsd.edu or eisenman@ucsd.edu # # ------------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt ##Model parameters (WE15, Table 1 and Section 2d) ------------------------- D = 0.6 # diffusivity for heat transport (W m^-2 K^-1) A = 193 # OLR when T = 0 (W m^-2) B = 2.1 # OLR temperature dependence (W m^-2 K^-1) cw = 9.8 # ocean mixed layer heat capacity (W yr m^-2 K^-1) S0 = 420 # insolation at equator (W m^-2) S2 = 240 # insolation spatial dependence (W m^-2) a0 = 0.7 # ice-free co-albedo at equator a2 = 0.1 # ice=free co-albedo spatial dependence ai = 0.4 # co-albedo where there is sea ice F = 0 # radiative forcing (W m^-2) # ------------------------------------------------------------------------- n = 50 # grid resolution (number of points between equator and pole) nt = .5 dur = 100 dt = 1/nt # Spatial Grid --------------------------------------------------------- dx = 1.0/n # grid box width x = np.arange(dx/2,1+dx/2,dx) #native grid xb = np.arange(dx,1,dx) # Diffusion Operator (WE15, Appendix A) ----------------------------------- lam = D/dx**2*(1-xb**2) L1=np.append(0, -lam) L2=np.append(-lam, 0) L3=-L1-L2 diffop = - np.diag(L3) - np.diag(L2[:n-1],1) - np.diag(L1[1:n],-1); S = S0-S2*x**2 # insolation [WE15 eq. (3) with S_1 = 0] aw = a0-a2*x**2 # open water albedo T = 10*np.ones(x.shape) # initial condition (constant temp. 10C everywhere) allT = np.zeros([dur*nt,n]) t = np.linspace(0,dur,dur*nt) I = np.identity(n) invMat = np.linalg.inv(I+dt/cw*(B*I-diffop)) # integration over time using implicit difference and # over x using central difference (through diffop) for i in range(0,int(dur*nt)): a = aw*(T>0)+ai*(T<0) # WE15, eq.4 C = a*S-A+F T0 = T+dt/cw*C # Governing equation [cf. WE15, eq. (2)]: # T(n+1) = T(n) + dt*(dT(n+1)/dt), with c_w*dT/dt=(C-B*T+diffop*T) # -> T(n+1) = T(n) + dt/cw*[C-B*T(n+1)+diff_op*T(n+1)] # -> T(n+1) = inv[1+dt/cw*(1+B-diff_op)]*(T(n)+dt/cw*C) T = np.dot(invMat,T0) allT[i,:]=T fig = plt.figure(1) fig.suptitle('EBM_fast_WE15') plt.subplot(121) plt.plot(t,allT) plt.xlabel('t (years)') plt.ylabel('T (in $^\circ$C)') plt.subplot(122) plt.plot(x,T) plt.xlabel('x') plt.show()