# Till Wagner's python version: # # Reference: "How Model Complexity Influences Sea Ice Stability", # T.J.W. Wagner & I. Eisenman, J Clim (2015) # # WE15_EBM_simple.m: # This code describes the EBM as discussed in Sec. 2b of the article above, # hereafter WE15. Here we use central difference spatial integration and # time stepping with MATLAB's ode45. # # The code WE15_EBM_fast.m, on the other hand, uses a faster, but more # complicated formulation of the diffusion operator and Implicit Euler time # stepping. # # Parameters are as described in WE15, table 1. Note that we do not include # ocean heat flux convergence or a seasonal cylce in the forcing # (equivalent to S_1 = F_b = 0 in WE15). This code uses an ice albedo when # T<0 (WE15 instead uses the condition E<0, which is appropriate for the # inclusion of a seasonal cycle in ice thickness). In this code, we define # T = Ts - Tm, where Ts is the surface temperature and Tm the melting point # (WE15, by contrast, defines T = Ts). # # Till Wagner & Ian Eisenman, Mar 15 # tjwagner@ucsd.edu or eisenman@ucsd.edu ##------------------------------------------------------------------------- import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt ##Model parameters (WE15, Table 1 and Section 2d) ------------------------- D = 0.6 # diffusivity for heat transport (W m^-2 K^-1) A = 193 # OLR when T = 0 (W m^-2) B = 2.1 # OLR temperature dependence (W m^-2 K^-1) cw = 9.8 # ocean mixed layer heat capacity (W yr m^-2 K^-1) S0 = 420 # insolation at equator (W m^-2) S2 = 240 # insolation spatial dependence (W m^-2) a0 = 0.7 # ice-free co-albedo at equator a2 = 0.1 # ice=free co-albedo spatial dependence ai = 0.4 # co-albedo where there is sea ice F = 0 # radiative forcing (W m^-2) # ------------------------------------------------------------------------- n = 50 # grid resolution (number of points between equator and pole) x = np.linspace(0,1,n) dx = 1.0/(n-1) S = S0-S2*x**2 # insolation [WE15 eq. (3) with S_1 = 0] aw = a0-a2*x**2 # open water albedo # ODE with spatial finite differencing------------------------------------- def odefunc(T,t): alpha = aw*(T>0)+ai*(T<0) C = alpha*S-A+F Tdot = np.zeros(x.shape) # solve c_wdT/dt = D(1-x^2)d^ for i in range(1,n-1): Tdot[i]=(D/dx**2)*(1-x[i]**2)*(T[i+1]-2*T[i]+T[i-1])-(D*x[i]/dx)*(T[i+1]-T[i-1]) # solve c_w dT/dt = D (1-x^2) d^2 T/dx^2 - 2 x D dT/dx + C - B T [cf. WE15 eq. (2)] # use central difference Tdot[0] = D*2*(T[1]-T[0])/dx**2 Tdot[-1] = -D*2*x[-1]*(T[-1]-T[-2])/dx f = (Tdot+C-B*T)/cw return f T0 = 10*np.ones(x.shape) # initial condition (constant temp. 10C everywhere) time = np.linspace(0.0,30.0,1000) # time span in years sol = odeint(odefunc,T0,time) # solve fig = plt.figure(1) fig.suptitle('EBM_simple_WE15') plt.subplot(121) plt.plot(time,sol) plt.xlabel('t (years)') plt.ylabel('T (in $^\circ$C)') plt.subplot(122) plt.plot(x,sol[-1,:]) plt.xlabel('x') plt.show()