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Abstract7

Paleoclimate records have been used to estimate the modern equilibrium climate sen-8

sitivity. However, this requires understanding how the feedbacks governing the climate9

response vary with the climate itself. Here we warm and cool a state-of-the-art climate10

model to simulate a continuum of climates ranging from a nearly ice-covered Snowball11

Earth to a nearly ice-free hothouse, and we compute the resulting changes in feedbacks.12

We find that the pre-industrial (PI) climate is near the stability optimum: warming leads13

to a less-stable (more-sensitive) climate, as does cooling of more than 2K. Under further14

cooling, we find that the total feedback becomes no longer stable, indicating the Snow-15

ball Earth bifurcation point. Physically interpreting the results using a radiative kernel16

analysis, we find that the decrease in stability for climates colder than the PI occurs mainly17

due to the albedo and lapse-rate feedbacks, and that the decrease in stability for climates18

warmer than the PI occurs mainly due to the cloud shortwave feedback. These results19

suggest a complex relationship between climate feedbacks and global temperature with20

a structure that is not well represented by including a term in the global energy bud-21

get that is quadratic in temperature, as has typically been assumed in previous studies22

relating feedbacks between different underlying climate states.23
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1 Introduction24

Recent community assessments (Sherwood et al., 2020; Forster et al., 2021) have25

substantially narrowed the estimated range of Earth’s equilibrium climate sensitivity (ECS)26

for the first time in decades, leading to better constraints on future warming (Lee et al.,27

2021). This narrowing of the uncertainty in the ECS (which is defined as the equilibrium28

global-mean surface temperature response to CO2 doubling from pre-industrial levels)29

was achieved in large part through the use of paleoclimate records from times when the30

climate was substantially different from today. In Sherwood et al. (2020), the ECS like-31

lihoods derived from proxy reconstructions of temperatures and estimates of radiative32

forcing during the Last Glacial Maximum (LGM) and mid-Pliocene warm period (mPWP)33

provided the strongest line of evidence against high ECS values. In Forster et al. (2021),34

proxy reconstructions of LGM, mPWP, and Eocene temperatures also informed the strongest35

line of evidence against high ECS values: so-called “emergent constraints” wherein a re-36

lationship between temperature changes and ECS within an ensemble of Earth System37

Models (ESMs) is combined with observations or paleoproxy reconstructions of those tem-38

perature changes to derive a constraint on ECS.39

A confounding factor in the use of paleoclimate records to inform the sensitivity40

of modern climate to greenhouse gas forcing is that the radiative feedbacks governing41

the climate response can vary with the underlying climate itself (e.g., Sherwood et al.,42

2020; Forster et al., 2021). That is, the use of paleoclimate records to constrain ECS re-43

quires understanding how modern radiative feedbacks (which govern ECS) relate to ra-44

diative feedbacks operating in climates much colder or much warmer than today.45

Following previous work (e.g., Roe & Armour, 2011; Bloch-Johnson et al., 2015,46

2021), Sherwood et al. (2020) represented the dependence of radiative feedbacks on the47

underlying climate by including a quadratic feedback term in the standard model of global48

energy balance used to relate reconstructions of temperature and climate forcing to modern-49

day ECS. This approach typically represents the net radiative feedback as becoming less50

negative (i.e., a more-sensitive climate) with global warming and more negative with global51

cooling (e.g., Sherwood et al., 2020). While higher-order terms that are cubic and be-52

yond in surface temperature could be included, they are typically assumed to be small53

and omitted. This raises key questions regarding the range of temperatures over which54

this approximation applies, what causes it to fail outside this range, and relatedly how55

confident we can be in the structure of the radiative feedback dependence on global tem-56

perature over a wide range of climate states. The answers to these questions also have57

implications for emergent constraints, in which the mapping of feedbacks between past58

and future climate states is implicitly accounted for through the use of ESMs to simu-59

late the paleoclimate states and ECS values on which the constraints rely.60

Here we warm and cool a state-of-the-art ESM to simulate a continuum of climates61

ranging from a nearly ice-covered Snowball Earth to a nearly ice-free hothouse planet.62

We analyze how the radiative feedbacks depend on the underlying climate, and we phys-63

ically interpret the results.64

2 Climate model simulations65

Using NCAR’s Community Earth System Model Version 2 (CESM2, Danabasoglu66

et al., 2020) in its standard workhorse configuration, we ramp CO2 concentrations over67

a range of 11.5 doublings. Specifically, we start from the end of a 500-year pre-industrial68

(PI) control simulation, which has a constant CO2 concentration of 284.7 ppm, and we69

either increase or decrease the atmospheric CO2 concentration at a rate of 1% per year70

(Fig. 1a). The Warming simulation, which extends the preexisting gradual CO2 quadru-71

pling simulation of Danabasoglu (2019a), is 279 years long and ends with a CO2 con-72

centration of 4,522 ppm, which is 16 times the PI value. The Cooling simulation is 51473
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years long and ends with a CO2 concentration of 1.6 ppm, which is 1/175 times the PI74

value. See Supplementary Information (SI) Sec. S1 for details.75

This leads to a 59K range in simulated global-mean surface temperature, with cli-76

mates ranging from a nearly ice-covered Snowball Earth to a nearly ice-free hothouse planet.77

Averaged over the last decade of the PI control simulation, the global-mean surface tem-78

perature is 15◦C, and the ice area is 11.4% of the global surface area. The latter includes79

sea ice, snow cover on land, and prescribed time-invariant glacial ice cover (see SI Sec. S180

for details), with sea ice covering 6.1% of the ocean (4.3% of the globe). In the Warm-81

ing simulation, the annual-mean global-mean surface temperature increases by 18K to82

33◦C (Fig. 1b), and the annual-mean ice area decreases to 3.2% of the globe (Fig. 1c),83

with sea ice covering 0.0% of the ocean. In the Cooling simulation, the temperature de-84

creases by 41K to -26◦C (Fig. 1b), and the ice area increases to 68.7% of the globe (Fig. 1c),85

with sea ice covering 70.3% of the ocean.86

The surface temperature in the deep tropics (averaged annually and over 10◦S–10◦N)87

is 28◦C in the PI (Fig. 1e), and it reaches 42◦C in the final decade of the Warming run88

(Fig. 1f) and 5◦C in the final decade of the Cooling run (Fig. 1d). In the PI climate, the89

polar surface temperature (averaged annually and over both hemispheres poleward of90

70◦) is -24◦C, and this region is largely covered with snow and ice (Fig. 1h). In the fi-91

nal decade of the Warming run, the polar temperature reaches 4◦C, and the remaining92

ice cover is almost exclusively glacial ice, which is a specified surface type in CESM2 with93

an area that does not evolve during the simulations. In the final decade of the Cooling94

run, the polar temperature reaches -68◦C, and the ice cover extends into the tropics.95

3 Net radiative feedback and effective climate sensitivity96

In order to evaluate the net radiative feedback over this continuum of climates, we97

adopt the standard model of global energy balance and climate feedbacks:98

∆N = ∆FGHG +∆Fnet = ∆FGHG + λnet ∆T, (1)

with99

λnet ≡
∆Fnet

∆T
=

∆N −∆FGHG

∆T
. (2)

Here all quantities are averaged annually and globally: N is the top-of-atmosphere (TOA)100

net energy flux reported by the model (using top-of-model fields), FGHG is an estimate101

of CO2 radiative forcing relative to PI based on the line-by-line radiative transfer cal-102

culations of Byrne and Goldblatt (2014) (see SI Sec. S2 and Fig. S1), Fnet ≡ N−FGHG103

is the net radiative response of the climate system, λnet is the net radiative feedback pa-104

rameter, and T is the surface temperature. The fluxes are defined to be positive in the105

downward direction, and the feedback parameter is negative for a stable climate. The106

modifier ∆ is described below.107

The radiative forcing FGHG and resulting value of N are plotted in Figs. 2a,b, and108

the difference Fnet is plotted in Fig. 2c. It can be readily seen that Fnet does not depend109

linearly on T . Specifically, the slope of the Fnet versus T curve (Fig. 2c) is most nega-110

tive near the PI climate (black vertical dashed line), being less steep in warmer and colder111

simulated climates. In extremely cold climates, the slope becomes zero around T = 0◦C112

and then changes sign for climates with T < 0◦C, implying that additional incremen-113

tal levels of cooling lead to less energy coming into the climate system and hence more114

cooling.115

We consider two approaches to define λnet in Eq. (2), following Rugenstein and Ar-116

mour (2021) (see SI Sec. S3 for details):117

(i) The “effective feedback” λeff
net, which describes the radiative feedback processes op-118

erating between a given climate state and the PI climate. In this case, we define ∆ as119
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Figure 1. Forcing and climate response in CESM2 simulations. Time series of (a) specified

atmospheric CO2 volume mixing ratio, (b) annual-mean global-mean surface temperature, and

(c) annual-mean global ice area (including sea ice, snow cover on land, and glacial ice), in the

Warming simulation (red) and the Cooling simulation (blue). Also included are surface temper-

ature maps averaged over the last decade of the (d) Cooling, (e) PI control, and (f) Warming

simulations, as well as ice area maps averaged over the last decade of the (g) Cooling, (h) PI

control, and (i) Warming simulations. Note that we use the relatively short averaging period of

a single decade in these maps in order to better capture the full range given the rates of change

near the end of the Warming and Cooling simulations.

the anomaly from the PI climate, and Eq. (2) is calculated from Fnet after applying a120

polynomial smoothing. Note that this allows λeff
net to vary smoothly even in the limit ∆T →121

0, as described in SI Sec. S3 and shown in Fig. S2.122

(ii) The “differential feedback” λdiff
net, which describes the feedback processes operating123

within a given climate. Hence λdiff
net is the local tangent value of the slope in Fig. 2a. In124

this case, we define ∆ as the anomaly associated with an incremental change in climate,125

and Eq. (2) is calculated using a regression of Fnet versus T within a running window.126

The effective feedback may be seen as most directly relevant to current discussions127

of ECS, since they often involve estimates of past climates compared with today, rather128

than estimates of past climate variability (e.g., Sherwood et al., 2020; Forster et al., 2021).129

On the other hand, the differential feedback reflects the radiative response to a temper-130

ature perturbation in a given underlying climate, and hence it may be somewhat eas-131

ier to physically interpret.132

The net feedback parameter calculated using each of these approaches is plotted133

in Figs. 2d,e. A striking result is that the PI climate is near the stability optimum. The134

differential feedback λdiff
net, which indicates the stability of the climate system to pertur-135

bations, is most negative when the global-mean temperature is 2K cooler than the PI136

value (Fig. 2d). Starting from the PI, warming leads to less-stabilizing radiative feed-137
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Figure 2. Dependence of the net feedback and effective climate sensitivity on the underlying

climate. (a) CO2 radiative forcing FGHG. (b) TOA net energy flux N . (c) Net radiative response

of the climate system, Fnet ≡ N − FGHG. (d) Net differential feedback parameter λdiff
net. (e) Net

effective feedback parameter λeff
net. The blue circle indicates the result from a previous analysis of

an instantaneous CO2 quadrupling simulation with the same climate model (Hahn et al., 2021).

(f) The effective climate sensitivity EffCS. All quantities are plotted versus the global-mean sur-

face temperature T . The dashed lines in panels (d) and (e) indicate a linear dependence of λnet

on ∆T that runs through the PI climate and either a climate 5K colder (red) or a climate 5K

warmer (magenta). In all panels, the vertical dashed line indicates the PI climate.

backs and hence a more-sensitive climate, as does cooling of more than 2K. The effec-138

tive feedback λeff
net shows similar behavior, being most negative when the global-mean139

temperature is 5K cooler than the PI value (Fig. 2e).140

The TOA net energy flux when the climate has reached equilibrium is N = 0, as141

is approximately the case in the simulated PI climate (Fig. 2b). Hence from Eq. (2), the142

equilibrium warming response to a change in CO2 is ∆T = −∆FGHG/λnet. This is known143

as the ECS in the special case of a doubling of CO2 from PI levels, as mentioned above.144

It is given by ECS = −F2×/λ2×, where F2× = 4.2 W/m2 is the value of the radiative145

forcing ∆FGHG when CO2 is doubled from its PI value of 284.7 ppm, and λ2× is the value146

of the feedback parameter λeff
net operating in this climate state. For other climate states,147

the effective climate sensitivity (EffCS) is similarly defined using the effective feedback148

parameter:149

EffCS ≡ −F2×

λeff
net

. (3)

The EffCS is plotted in Fig. 2f. This shows that the sensitivity is lowest near the150

PI climate, with more-sensitive climates at warmer and much colder temperatures. The151

continuum of simulated climates spans a range of EffCS values from 2◦C to 15◦C. Note152

that the EffCS (Fig. 2f) scales as the inverse of λeff
net (Fig. 2e).153
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Under more-extreme cooling, the value of λdiff
net in Fig. 2d becomes positive when154

the global-mean temperature drops below approximately 0◦C, which is 15K colder than155

the PI climate. At this point there is a change in the sign of the slope of the Fnet ver-156

sus T curve in Fig. 2c: as the temperature drops below this point, incremental coolings157

are accompanied by incremental decreases in the level of heating by the net radiative re-158

sponse of the climate system. This corresponds to the Snowball Earth bifurcation point,159

beyond which the sea ice in the model irreversibly expands toward the equator. Note that160

this is the point at which the global-mean temperature and global ice area begin to abruptly161

change in the Cooling simulation (Fig. 1b,c). The implications of this change in the sign162

of λdiff
net can be illustrated using a simple single-layer model of the climate system, which163

is described in SI Sec. S4. The positive value of λdiff
net implies that the climate is transi-164

tioning across a range of temperatures for which the only equilibrium climate state is165

unstable (SI Fig. S3). Previous studies have demonstrated that bifurcations and bista-166

bility associated with the Snowball Earth climate occur in climate models of varying lev-167

els of complexity in certain ranges of CO2 and solar luminosity (e.g., Marotzke & Botzet,168

2007; Voigt & Marotzke, 2010; Roe & Baker, 2010; Voigt et al., 2011; Pierrehumbert et169

al., 2011). Note that λeff
net remains negative for all climates, in contrast with λdiff

net, which170

illustrates how the EffCS and λeff
net framework can give potentially misleading results about171

the stability of the underlying climate state because it is based on anomalies from the172

PI climate.173

Under warming, the values of λeff
net and λdiff

net increase monotonically. Notably, the174

climate remains stable (λdiff
net is negative) even at extreme levels of global warming near-175

ing 15K above the PI. Note that previous studies using idealized single-column radia-176

tive models have found that the net climate feedback becomes more negative with warm-177

ing for climates warmer than approximately 25K above the PI (Seeley & Jeevanjee, 2021;178

Kluft et al., 2021).179

Note that when the climate is forced to transiently evolve away from an equilibrated180

state, it is possible for the climate feedback parameter to become less negative due to181

the spatial pattern of surface temperature changes (Winton et al., 2010). In SI Sec. S4,182

we investigate the extent to which this may explain the results in Fig. 2d,e by using a183

standard two-layer model of the climate system (Held et al., 2010) that includes a term184

to represent the deep ocean heat uptake efficacy. The results show that although deep185

ocean heat uptake efficacy can cause λdiff
net and λeff

net to become less negative under both186

warming and cooling as the climate gets farther from its equilibrated state, a moderate187

(CMIP5-mean) deep ocean heat uptake efficacy leads to far smaller changes in λnet than188

we find in CESM2 (SI Fig. S4). Furthermore, even with a large ocean heat uptake ef-189

ficacy, the two-layer model results in a “V”-shaped feedback dependence on tempera-190

ture that is centered at the equilibrated climate (purple curve in SI Fig. S4), in contrast191

to the “U” shape centered at a temperature several degrees colder than the PI that we192

find in CESM2 (Fig. 2d,e). This suggests that the changes in λnet shown in Fig. 2d,e are193

considerably outside of what would be expected from changing surface temperature pat-194

terns associated with deep ocean heat uptake, and that feedback nonlinearities with global195

temperature are the main cause of the dependence of the net feedback on the underly-196

ing climate in CESM2 over the simulated range considered here.197

3.1 Linear representation of λnet(T )198

Many recent studies have suggested that colder climates are more stable than warmer199

climates, including climates considerably colder than the PI. Specifically, as summarized200

in Forster et al. (2021), paleoclimate records (von der Heydt et al., 2014; Anagnostou201

et al., 2016, 2020; Friedrich et al., 2016; Royer, 2016; Shaffer et al., 2016; Kohler et al.,202

2017; Snyder, 2019; Stap et al., 2019) and comprehensive climate models (Caballero &203

Huber, 2013; Jonko et al., 2013; Meraner et al., 2013; Good et al., 2015; Duan et al., 2019;204

Mauritsen et al., 2019; Stolpe et al., 2019; Zhu et al., 2019) suggest a general trend to-205
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ward less-stabilizing radiative feedbacks (hence higher EffCS) with increasing global tem-206

perature over a range of climates spanning approximately 6K colder than today to ap-207

proximately 10K warmer than today. However, the results presented here suggest that208

the PI climate is near a stability optimum, with warming and cooling beyond 2K both209

leading to less-stable climates (Fig. 2d). Similarly, warming and substantial cooling both210

lead to less-negative values of λeff
net and higher EffCS (Figs. 2e,f). While the climate at211

the temperature characteristic of the LGM (4-6K colder than the PI) is more stable than212

the simulated climates that are warmer than the PI, consistent with the studies men-213

tioned above, we find that climates beyond about 6K colder than PI can be consider-214

ably less stable than climates warmer than the PI.215

As noted in the Introduction, previous work has typically represented nonlinear-216

ities in the dependence of the net radiative response on the underlying climate by us-217

ing a quadratic relationship with global temperature (e.g., Sherwood et al., 2020). In this218

case, Eq. (1) is replaced with219

∆N = ∆FGHG + λ0 ∆T +
1

2
α∆T 2, (4)

where λ0 is the net feedback near the PI climate and α is a coefficient scaling the non-220

linear radiative response. This implies a linear dependence on global temperature for both221

the effective feedback and the differential feedback:222

λeff
net = λ0 +

1

2
α∆T and λdiff

net = λ0 + α∆T.

Note that here we adopt the formalism used in Sherwood et al. (2020).223

Sherwood et al. (2020) use the value α = 0.1 W/m2/K2 (with an uncertainty of224

±0.1 W/m2/K2) for the difference in the feedback at the LGM compared with the PI,225

and they implicitly assume no change in feedback between the PI and warmer climates.226

We include red dashed lines in Figs. 2d,e to represent a linear dependence of λnet on T227

that goes through the PI climate (T = 15◦C) and the climate with an LGM-like level228

of cooling (T = 10◦C). The slopes of the curves correspond to values of α = −0.01 W/m2/K2
229

for λdiff
net and α = 0.05 W/m2/K2 for λeff

net. We also include for comparison magenta dashed230

lines that go through the PI climate and the climate at 5K of warming (T = 20◦C),231

which have slopes that correspond to values of α = 0.17 W/m2/K2 for λdiff
net and α =232

0.10 W/m2/K2 for λeff
net. Note that CESM2 has previously been shown to be among the233

ESMs with the largest values of α when assessed for temperature changes near the PI234

climate (Bloch-Johnson et al., 2021).235

These results show that the value of α adopted by Sherwood et al. (2020) for the236

change in λnet at the LGM is much larger than in the CESM2 results, because the “U”237

shape in Figs. 2d,e causes the feedback at 5K of cooling to be similar to the feedback238

at the PI. If we were to repeat the Sherwood et al. (2020) analysis using the value of α239

that we find here for the difference between the LGM and PI feedbacks, our lower value240

of α would imply a lower modern-day climate sensitivity than Sherwood et al. (2020) found,241

which amounts to a stronger constraint on the upper bound of the EffCS than they re-242

port. This is because the CESM2 results suggest that the LGM may be a more direct243

analogue to current warming than previously assumed, since the feedbacks are relatively244

similar. In other words, Sherwood et al. (2020) took λnet to be more negative at the LGM245

than the modern value, whereas we find that the feedbacks are similar. So a given pa-246

leo estimate of the LGM value of λnet implies a similar modern feedback value accord-247

ing to our results, whereas the analysis of Sherwood et al. (2020) would take it to im-248

ply a less negative modern feedback and hence a more sensitive modern climate.249

For climates warmer than the PI, these results imply a larger value of α that is ac-250

tually somewhat similar to the Sherwood et al. (2020) result. But here the value of α251

applies to warming rather than cooling. Overall, this suggests that feedback nonlinear-252
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ities could be large for future warming, consistent with some other studies (e.g., Bloch-253

Johnson et al., 2021), while being relatively small for colder climates similar to the LGM.254

These results suggest that the formulation of feedbacks as changing linearly with255

global temperature applies only over a narrow range of climates, and that because of the256

“U” shape of the relationship between the feedback and the underlying climate, com-257

paring feedbacks between two climates depends sensitively on the temperatures of the258

climates.259

The range of climates over which the quadratic term in the global energy budget260

(Eq. (4)) serves as a useful approximation can be seen by comparing the linear fits to261

the values of λdiff
net and λeff

net (magenta lines in Figs. 2d,e). For the effective feedback λeff
net,262

the quadratic term captures much of the variation in the feedback parameter for climates263

with T between about 3K colder and 8K warmer than the PI climate, thus serving as264

a decent approximation to feedback changes over a temperature range spanning the PI265

climate and CO2 quadrupling but not spanning climates as cold as the LGM. Outside266

of this temperature range, the quadratic approximation fails spectacularly. For the dif-267

ferential feedback λdiff
net, the quadratic term provides a decent approximation over a sim-268

ilar temperature range. Including additional terms in the Taylor series expansion (i.e.,269

order ∆T 3 and higher in Eq. (4)) would be expected to widen the range over which the270

expansion provides a useful approximation.271

4 Individual radiative feedback parameters272

In order to identify what physical processes are responsible for the decrease in sta-273

bility under both cooling and warming from the PI (Fig. 2b), we begin by using a ra-274

diative kernel analysis to assess which individual feedback parameters are driving the275

changes. The radiative kernels were generated by Pendergrass et al. (2018) based on CAM5,276

which is the previous version of the atmospheric model in CESM2. Using these kernels,277

we compute the annual-mean global-mean change in the radiative response associated278

with changes in the surface temperature (FP for Planck feedback), atmospheric lapse rate279

(FL for lapse-rate feedback), humidity (Fw for water-vapor feedback), and surface albedo280

(Fα for albedo feedback). We compute the cloud radiative response (Fc) as the differ-281

ence between the sum of the individual feedbacks and Fnet; hence Fc also includes the282

residual (Fres) due to inaccuracies in the radiative kernel analysis (see SI Sec. S5 for de-283

tails). Each of the resulting radiative responses is shown in SI Fig. S5. Note that the ra-284

diative kernel analysis effectively linearizes the simulated response to changing climate285

fields about a climate near the PI. Although it would be more accurate to use radiative286

kernels that vary with the climate (e.g., Jonko et al., 2012), the present analysis could287

be seen as a preliminary step toward building understanding of feedbacks across a wide288

continuum of climate changes by using a kernel that does not vary with climate, before289

considering how the radiative kernels change.290

We define each individual feedback parameter as291

λi ≡
∆Fi

∆T
, (5)

where the subscript i can indicate any individual feedback and ∆ has the same two def-292

initions as in Eq. (2).293

The results (Fig. 3) indicate that the decrease in stability (i.e., λdiff
net becoming less294

negative) for climates more than 2K colder than the PI is caused by the lapse-rate and295

albedo feedbacks, whereas the decrease in stability for climates warmer than the PI is296

caused mainly by the cloud feedback. The roles of these feedbacks occur robustly in both297

the differential feedback analysis (right column in Fig. 3) and the effective feedback anal-298

ysis (left column in Fig. 3). Note that although there is some compensation between the299

lapse-rate feedback (λL) and the water-vapor feedback (λw), as expected, the changes300
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in the combined feedback (λL+λw) are dominated by the lapse-rate feedback (see red301

dashed lines in third row of Fig. 3).302

4.1 Physical interpretation of results303

Here we interpret the results in Fig. 3. We focus on the differential feedback pa-304

rameters, since they describe the physics of a given climate and hence may be more-readily305

understood than the effective feedback parameters.306

The large range of simulated climate changes may be expected to be annually and307

zonally uniform to a first approximation. Hence we repeat the analysis in Fig. 3 taking308

the annual average and the zonal average of each kernel as well as each simulated cli-309

mate field before multiplying the kernels by the climate fields (see SI Sec. S6 for details).310

We find that the result matches closely with the feedback parameters computed using311

the full 4-dimensional structure of the simulated climate and kernel fields (SI Fig. S6).312

This suggests that the zonal and seasonal patterns of temperature, surface albedo, hu-313

midity, and cloud changes do not play a substantial role in the variations in each feed-314

back parameter shown in Fig. 3, allowing the specific factors driving the variations in315

each feedback parameter to be more-readily assessed by examining only the meridional316

and vertical structure of the fields.317

The decrease in stability with cooling in cold climates is the main novel result of318

the present study, since previous work has discussed the decrease in stability with warm-319

ing. Hence we begin by interpreting the lapse-rate and albedo feedbacks.320

Lapse-rate feedback. The lapse-rate feedback describes the impact of changes321

in the vertical temperature structure. In the tropics today, deep convection occurs, and322

the temperature profile is close to being moist adiabatic. Warming causes the moist adi-323

abatic lapse rate to decline. This is a negative local feedback, since it means that smaller324

changes in surface temperature are needed to bring about a given change in outgoing long-325

wave radiation. On the other hand, in the present-day Arctic the planetary boundary326

layer is often capped by a temperature inversion and hence a very stable stratification,327

which suppresses vertical mixing and causes temperature changes at the surface not to328

be propagated aloft, which is a positive local feedback.329

The inversion strength can be described by the difference in potential temperature330

between the 700-hPa level and the surface (cf. Wood & Bretherton, 2006), which is plot-331

ted in Fig. 4a. Across the range of simulated climates, ice-covered regions of the globe332

tend to have an inversion, as expected because the surface absorbs less solar radiation333

when it is covered with snow or ice, setting up the potential for a positive lapse-rate feed-334

back in these regions. This leads to a less-negative global lapse-rate feedback as the cli-335

mate cools and more of the globe resembles the present-day Arctic (Fig. 4a,b).336

As the climate warms and sea ice is lost, the erosion of polar inversions leads to337

less-positive polar lapse-rate feedbacks (Fig. 4a,b). However, the lapse-rate feedback in338

the tropical region becomes less negative with warming for climates warmer than the PI.339

An analysis of a previous version of this model lead to fairly similar changes in the spa-340

tial pattern of the lapse-rate feedback parameter under varied levels of forced warming341

(Merlis et al., 2022). The mechanisms driving the changes in the tropical temperature342

profile that cause this are beyond the scope of the current study. The result is that the343

global lapse-rate feedback becomes somewhat less negative with warming, at least up to344

temperatures about 10 K warmer than the PI climate, although the cloud feedback dom-345

inates the changes in the net feedback parameter for climates warmer than the PI.346

The temperature feedback radiative kernel has a spatial structure that varies ver-347

tically but which is fairly uniform horizontally, suggesting that lapse-rate feedback changes348

should approximately track changes in the vertical structure of globally-averaged atmo-349
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Figure 3. Individual feedback parameters computed using radiative kernels. Panels have

different vertical ranges but the same vertical scale for comparison. The sum of the lapse-rate

and water-vapor feedbacks is also indicated in the third row, and the clear-sky result for the

residual is also indicated in the fifth row. The vertical dashed line in each panel indicates the PI

climate. The blue circles indicate the results from a previous analysis of an instantaneous CO2

quadrupling simulation with the same climate model (Hahn et al., 2021) for comparison.
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spheric warming. Indeed, we get a similar result when we repeat the analysis using the350

global-mean temperature profile (red line in Fig. 4c), which removes the influence of hor-351

izontal variations in the efficiency of radiation to space but still retains vertical varia-352

tions. This result implies that the changes in the lapse-rate feedback parameter under353

cooling global temperature are dictated primarily by the global-mean atmospheric tem-354

perature profile becoming more similar to the Arctic today, causing the global lapse-rate355

feedback to approach the positive value in the Arctic today.356

Albedo feedback. The albedo feedback occurs because a warmer climate has less357

ice cover, and ice-free regions absorb more solar radiation rather than reflecting it back358

to space. We find that the albedo feedback increases approximately monotonically with359

cooling global temperature across the range of simulated climates. The albedo feedback360

radiative kernel has a spatial structure with values most negative in the low latitudes,361

where there is the most incident solar radiation. Nonetheless, we find that the migra-362

tion of the ice edge into sunnier latitudes has a relatively limited influence on the vari-363

ations in the albedo feedback parameter: we get a fairly similar result when we repeat364

the analysis using a spatially-uniform radiative kernel, which removes the influence of365

spatial variations in incident solar radiation as well as clouds and other factors (red line366

in Fig. 4e). In this case the albedo feedback parameter is approximated to be propor-367

tional to the sensitivity of the ice area to global temperature (i.e., the slope in Fig. 4d).368

This implies that the albedo feedback becomes more destabilizing primarily because the369

ice area expands more rapidly with cooling in colder climates.370

This behavior continues in climates warmer than the PI, with the change in ice area371

per change in global temperature continuing to decrease as the climate warms (Fig. 4d),372

leading to a smaller albedo feedback in warmer climates (Fig. 4e). In the warmest sim-373

ulated climates there is almost no remaining snow and sea ice (Fig. 1i), and the albedo374

feedback λdiff
α approaches zero (Fig. 3).375

Cloud feedback. Clouds cause shortwave cooling and longwave heating, and changes376

in clouds with climate lead to a feedback that can be either positive or negative. We find377

that the cloud feedback in CESM2 is approximately zero near the PI climate, but the378

feedback becomes increasingly destabilizing as the underlying climate warms. Previous379

work using CESM2 and earlier versions of this model similarly found that cloud feed-380

backs are more destabilizing in warmer climates (Caballero & Huber, 2013; Zhu et al.,381

2019; Zhu & Poulsen, 2020).382

An important caveat associated with the changes in the cloud feedback shown in383

Fig. 3 is that this term includes the residual due to factors including inaccuracies in the384

radiative kernel analysis. One measure of this is the residual when the kernel analysis385

is repeated using clear-sky fields (see Sec. 5 below), which we find contributes about 25%386

of the diagnosed cloud feedback change between the PI and warmest simulated climates387

(red dashed line in bottom right panel of Fig. 3).388

We also carry out an alternative test of the impact of clouds that does not rely on389

the radiative kernels. Instead, we redo the net feedback analysis in Fig. 2 using clear-390

sky fields reported by the model for the change in TOA net energy flux ∆N . The result-391

ing values of λeff
net and λdiff

net are plotted in SI Fig. S8. For both measures of the net feed-392

back in SI Fig. S8, the feedback remains relatively constant in climates warmer than the393

PI when using clear-sky fields, whereas it becomes steadily less negative with warming394

when using all-sky fields. This suggests that cloud changes contribute substantially to395

the trend toward a less-negative net feedback for climates warmer than the PI, consis-396

tent with the kernel analysis results in Fig. 3.397

This alternative approach also allows us to separate the influence of cloud short-398

wave effects from cloud longwave effects. We find that using clear-sky fields for only the399

longwave component of ∆N causes behavior resembling the all-sky results, whereas us-400
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ing clear-sky fields for only the shortwave component of ∆N causes behavior resembling401

the clear-sky results (SI Fig. S8). This suggests that the increase in the net feedback in402

warm climates is caused primarily by the cloud shortwave feedback, which is consistent403

with the results of previous studies (Caballero & Huber, 2013; Zhu et al., 2019; Zhu &404

Poulsen, 2020).405

Planck feedback. The Planck feedback describes how warming the surface and406

atmospheric column above causes more outgoing longwave radiation to space due to the407

Stefan-Boltzmann law. This feedback remains relatively invariant across the range of sim-408

ulated climates, although it becomes slightly more negative as the climate cools. Note409

that because we use a radiative kernel, we account only for changes in the Planck feed-410

back due to the evolving pattern of surface temperature change, and we do not repre-411

sent how the Planck feedback depends on global temperature. The Planck feedback ra-412

diative kernel is most negative in the warmest regions of the control climate (see SI Sec. S6).413

The meridional structure of the surface temperature evolution is shown in SI Fig. S7.414

Simulated surface temperature changes tends to be amplified in ice-covered regions (Fig. 4f),415

which is expected to occur primarily due to the albedo feedback and lapse-rate feedback.416

As the ice-covered regions expand equatorward, the amplification moves out of the po-417

lar region, which causes the Planck feedback to become slightly more negative (see SI418

Sec. S6 for details). Note that Fig. 4f indicates that polar amplification is not a ubiq-419

uitous feature of climate change within this wide range of climates.420

Water-vapor feedback. The water-vapor feedback occurs because warmer air421

can hold more water vapor, which is a greenhouse gas. This feedback tends to be more422

positive in warmer climates, for reasons that can be explained using idealized one-dimensional423

radiative-convective equilibrium models (Meraner et al., 2013). Consistent with this, we424

find that the strength of the water-vapor feedback varies approximately monotonically425

with the underlying climate, becoming more positive with warming, although it becomes426

fairly constant in climates warmer than the PI.427

5 Caveats428

The results in Fig. 2 rely on direct model output in addition to the estimated CO2429

radiative forcing (FGHG), which is computed using the line-by-line radiative transfer cal-430

culations of Byrne and Goldblatt (2014). These instantaneous radiative forcing (IRF)431

calculations do not account for stratospheric temperature adjustment, although they give432

similar results for our purposes to the line-by-line radiative model results of Etminan et433

al. (2016) which do include stratospheric temperature adjustment (SI Fig. S1). Neither434

calculation allows for the rapid adjustments to the tropospheric temperature profile in435

response to CO2 forcing that are needed to estimate the effective radiative forcing (ERF;436

Sherwood et al., 2015).437

We assess the error associated with this approach by comparing with two separate438

estimates of the ERF associated with CO2 quadrupling from the PI level in CESM2, not-439

ing that the error may be larger for climates farther from the PI. First, we use a preex-440

isting CESM2 run (Danabasoglu, 2019c) that has the sea-surface temperature (SST) field441

fixed at PI values and CO2 increased by 4× in order to estimate the ERF based on the442

change in TOA net radiation fields. Second, we use the regression method of Gregory443

et al. (2004) to estimate the ERF based on the first 20 years of a preexisting CESM2 sim-444

ulation in which CO2 was instantaneously quadrupled from its PI value (Danabasoglu,445

2019b). In the latter analysis, the ERF is obtained by extrapolating the relationship be-446

tween global-mean TOA net energy flux and surface temperature to zero surface tem-447

perature anomaly. The results are 8.90 W/m2 for the fixed-SST ERF estimate and 8.77 W/m2
448

for the regression method ERF estimate, compared with 8.56 W/m2 in the line-by-line449

radiative transfer code IRF estimate that we adopt in this analysis. The close agreement450

between the IRF estimate from the radiative transfer code and the ERF estimate from451
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Figure 4. Physical interpretation of changes in individual feedback parameters. (a) Inversion

strength, plotted as the difference in annual-mean zonal-mean potential temperature θ between

the 700-hPa level and the surface. (b) Spatial structure of the annual-mean zonal-mean lapse-rate

feedback parameter value (see SI Sec. S6). The spatial mean of this field gives the differential

lapse-rate feedback parameter as estimated using annual-mean global-mean fields (SI Fig. S6).

(c) Lapse-rate feedback parameter dependence on underlying climate. The red line is an approx-

imation using only the global-mean atmospheric temperature profile, given by Eq. (S19) in SI

Sec. S6, and the blue line is λdiff
L repeated from Fig. 2. (d) Global ice area (as in Fig. 1c) plotted

versus surface temperature. (e) Albedo feedback parameter dependence on underlying climate.

The red line is an approximation using only the sensitivity of the total ice area to global-mean

temperature (i.e., the slope of the curve in panel d), given by Eq. (S21) in SI Sec. S6, and the

blue line is λdiff
α repeated from Fig. 2. (f) Pattern of amplified surface warming, shown as the

change in the local departure of the zonal-mean temperature from the global-mean temperature,

normalized by the change in the global-mean temperature (see SI Sec. S6). The black vertical

dashed line in each panel indicates the PI climate. In panels a, b, and f, the black solid line

indicates the 50% contour of the ice cover.

CESM2 may be coincidental given that CESM2, like most ESMs, shows substantial forc-452

ing adjustments from rapid changes in atmospheric temperature and cloud cover in re-453

sponse to CO2 changes (e.g., Smith et al., 2020). However, this agreement gives confi-454

dence in the use of the IRF estimate (Fig. 2a) as an approximation to the ERF in CESM2455

for our calculations.456

Another consideration is whether radiative forcing should change with the under-457

lying climate itself. Here we have adopted the standard definition of radiative forcing458

that assumes that CO2 changes occur within a constant climate (i.e., fixed surface tem-459

perature), and hence that all radiatively-important atmospheric and surface field changes460

beyond rapid adjustments are part of the radiative feedback on surface temperature changes.461

However, another defensible choice for the differential feedback would be to define ra-462

diative forcing relative to the continuously evolving climate, in which case the CO2 forc-463
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ing would change depending on factors including changes in atmospheric water vapor,464

cloud cover, and the difference in temperature between the surface and the stratosphere465

(e.g., Jeevanjee et al., 2021; Romps et al., 2022). Calculating the radiative forcing un-466

der this alternative definition, which would require additional simulations, would mod-467

ify the value of the differential feedback. Note that while this ambiguity in forcing def-468

inition is inherent to the differential feedback, the effective feedback only uses the stan-469

dard radiative forcing definition adopted here because it is defined in terms of anoma-470

lies relative to the PI climate (Sherwood et al., 2015; Jeevanjee et al., 2021).471

As noted above, the radiative kernel analysis does not allow the radiative response472

to perturbations in climate fields to evolve with the underlying climate because it effec-473

tively linearizes the simulated response about a climate near the PI. Furthermore, since474

the radiative kernels are set to zero above a fixed tropopause, radiative responses may475

not be calculated accurately in climates with a tropopause that is substantially higher476

than in the PI (e.g., Meraner et al., 2013).477

To assess the accuracy of the kernel analysis, we re-ran the kernel analysis using478

clear-sky versions of the radiative kernels, which are included in the fields produced by479

Pendergrass et al. (2018). The residual between the sum of the clear-sky feedback pa-480

rameters and the clear-sky TOA net energy flux reported by the model is indicated as481

a red dashed line in the bottom row of Fig. 3. This provides an estimate of the uncer-482

tainty in the analysis. Although not negligible, the values are relatively small. Note that483

cancelation between feedbacks may play a role in these relatively small residuals (cf. Koll484

& Cronin, 2018), especially for climates far from the PI.485

Furthermore, for the lapse-rate and albedo feedbacks, which dominate net feedback486

changes in colder climates, we found that using a horizontally-averaged kernel produced487

similar results. That is, horizontal variations in the kernel between the warm tropics and488

cold poles have minimal influence on how feedbacks change across climate states; instead,489

feedback changes primarily track changes in the global ice extent and the globally-averaged490

vertical structure of the atmosphere. This insensitivity to capturing differences in the491

radiative kernels across the range of spatial variations in the control climate (from the492

tropics to the poles) suggests that changes in the radiative efficiency of the atmosphere493

across climate states may be of secondary importance, supporting the accuracy of this494

analysis which uses a kernel that does not vary with climate.495

This analysis uses an approximately equilibrated PI climate, whereas the simulated496

climates that are increasingly warmer or colder than the PI are expected to be increas-497

ingly far from equilibrium. Hence it may be seen as a source of concern that the net cli-498

mate feedback is found to be most negative near the PI and increasingly less negative499

in climates increasingly warmer or colder than the PI. However, a number of factors sug-500

gest that the level of equilibration is not substantially influencing the values of the cli-501

mate feedback that we calculate. First, we identify simple and fairly basic physical pro-502

cesses that drive the increase in sensitivity with cooling (related to the lapse rate and503

albedo feedbacks), suggesting that this is likely to be a robust climate response, and the504

increase in sensitivity with warming has been previously identified as a robust feature505

of many climate models (e.g., Forster et al., 2021, their Fig. 7.11). Second, previous stud-506

ies have found a loss of stability at the Snowball Earth bifurcation point, implying an507

increase in sensitivity as λdiff
net approaches zero under extreme cooling. Third, the min-508

imum climate feedback is in a climate that is approximately 2K colder than the PI, rather509

than being at the equilibrated PI climate. Fourth, this approach does not depend on the510

level of equilibration, at least when applied to a simplified representation of the climate511

system (SI Fig. S3). Fifth, we find that the impact of deep ocean heat uptake efficacy512

would not produce this shape (SI Fig. S4). And sixth, the clear-sky residual is relatively513

small (Fig. 3), showing that the alternative approach of using kernels, rather than the514

TOA balance used to generate the results in Figs. 2d,e, gives a similar result.515
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Moreover, we compared our results with a previous analysis (Hahn et al., 2021) of516

the CESM2 instantaneous CO2 quadrupling simulation (Danabasoglu, 2019b). Hahn et517

al. (2021) used the same radiative kernels as the present study (Pendergrass et al., 2018),518

and their results include values for the feedback parameters around simulation year 100519

(averaged over their simulation years 85-115), at which point the global-mean surface520

temperature is 6.6◦C above the initial PI value. We indicate the feedback parameter val-521

ues at this level of warming as blue circles in Fig. 3. The agreement with our analysis522

(blue lines in Fig. 3) adds some confidence to our interpretation that the relationships523

we find between feedback values and global temperatures do not depend strongly on the524

degree of equilibration. We similarly included a blue circle indicating their value for λeff
net525

in Fig. 2e, which agrees with our results (blue line in Fig. 2e).526

Finally, the experimental design used here does not allow for slow feedbacks asso-527

ciated with factors including changes in ice sheets, the carbon cycle, and the deep ocean,528

which could modify the stability of the climate given sufficient time to adjust. These re-529

sults should thus be interpreted as a measure of how the traditional fast feedbacks (i.e.,530

Planck, water vapor, lapse rate, surface albedo, and clouds) depend on the underlying531

climate state, and they are relevant to studies that treat ice sheets and other slow feed-532

backs as external forcings (e.g., the LGM analysis of Sherwood et al., 2020). If ice sheets533

were allowed to change, it is expected that their distinct spatial structure of ERF would534

produce different relationships between climate feedbacks and global temperature changes535

than those under CO2 forcing alone explored here (e.g., Zhu & Poulsen, 2021; Cooper536

et al., 2023). It is similarly expected that the results may differ if the model were allowed537

to approximately equilibrate to each level of CO2, rather than using the 1% per year ramp-538

ing adopted in the present study.539

6 Summary and conclusions540

As constraints on the modern-day ECS based on past warm and cold climates gain541

in prominence (e.g., Sherwood et al., 2020; Forster et al., 2021), it is becoming increas-542

ingly important to understand how and why climate feedbacks change over a wide range543

of climate states. In this study, we warmed and cooled a state-of-the-art climate model544

(NCAR CESM2) to simulate a continuum of climates ranging from a nearly ice-covered545

Snowball Earth to a nearly ice-free hothouse planet. We ramped CO2 concentrations over546

a range of 11.5 doublings, which led to a 59K range in simulated annual-mean global-547

mean transient surface temperature changes.548

Previous studies have represented the dependence of climate feedbacks on the un-549

derlying global temperature by approximating that the net feedback scales linearly, which550

is equivalent to including a quadratic term in the global energy budget (e.g., Sherwood551

et al., 2020). Our results suggest that this representation only approximately holds over552

a limited range of climates, spanning about 3K colder to 8K warmer than the PI climate.553

Importantly, LGM-like temperatures (4-6K colder than PI) fall outside of this range, sug-554

gesting that this representation is not accurate for assessing how LGM feedbacks relate555

to feedbacks in the modern-day or future climate, as has been done in previous analy-556

ses (e.g., Sherwood et al., 2020). The “U” shape of the relationship we find between the557

net feedback and global temperature implies a stronger constraint lowering the upper558

bound of the EffCS as inferred from LGM proxy reconstructions than reported by (Sherwood559

et al., 2020).560
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Since the relationship between the simulated net feedback and underlying climate561

is expected to depend on the choice of model, it would be useful to reproduce the present562

analysis using other ESMs. It is noteworthy that the 279-year and 514-year CO2 ramp-563

ing simulations generated for this analysis could be fairly straightforwardly repeated with564

a different ESM. This would be particularly valuable because paleoclimate constraints565

on the ECS all rely on mapping feedbacks between different climate states. Recent stud-566

ies using CESM2 identified an apparent cold bias in the simulation of the LGM climate567

(Zhu et al., 2021) and warm bias in the simulation of the early Eocene (Zhu et al., 2020),568

and a new version of the model was developed with cloud feedbacks tuned to be less pos-569

itive (“CESM2-PaleoCalibr”, Zhu et al., 2022), which reduced the LGM bias and also570

resulted in a reduced modern-day ECS. Comparing the present analysis with a similar571

analysis that used CESM2-PaleoCalibr rather than CESM2 would further identify to what572

extent the tuning caused the dependence of the net feedback on the underlying climate573

to be shifted or restructured, which may shed further light on the way feedbacks in past574

climate states serve as analogs for feedbacks in the modern climate. That is, future work575

could determine whether identified biases in simulations of past warm climates using ESMs576

become reduced by changes in the value of the net feedback applying to all climates states577

(a vertical shift of the “U” shape in Figs. 2d,e) or by changes in the net feedback depen-578

dence on the underlying climate state (a change in the horizontal width of the “U” shape579

in Figs. 2d,e).580

The results presented here are a first step toward mapping feedback changes over581

a wide range of climates. They place past and future climate changes in a broader con-582

text, with implications for our understanding of what physical mechanisms cause the sen-583

sitivity of each radiative feedback to the underlying climate state.584

Data availability585

Model output from the Warming and Cooling simulations is available at https://eisenman-586

group.github.io. The kernels used in this analysis were downloaded from https://github.com/apendergrass/cam5-587

kernels. Source data for the line plots in Figs. 1–4 are provided with this paper.588

Code availability589

Code to compute the differential and effective net feedback parameters (Fig. 2d,e)590

from the simulation output, which can similarly be used with the kernels to compute the591

individual feedback parameters (Fig. 3), is available at https://eisenman-group.github.io.592
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Supplementary Information for “The radiative807

feedback continuum from Snowball Earth808

to an ice-free hothouse”809

Ian Eisenman and Kyle Armour810

S1 Simulation details811

We use NCAR CESM2 in its standard workhorse configuration. The atmospheric812

component is CAM6, and the ocean component is POP2. The atmosphere and ocean813

both have nominal horizontal resolutions of 1◦, and there are 32 vertical levels in the at-814

mosphere and 60 vertical levels in the ocean.815

The Warming and Cooling simulations are both branched from the end of year 500816

of a previously run pre-industrial (PI) control simulation (Danabasoglu et al., 2020) with817

the forcing fixed at 1850 levels. The atmospheric CO2 concentration is increased or de-818

creased at a rate of 1% per year from the start of each simulation. For the first 150 years819

of the Warming run, we use the pre-existing CESM2 “1pctCO2” simulation that is part820

of the CMIP6 archive (Danabasoglu, 2019a), which we extend to simulate further warm-821

ing by branching to a cloned case. The Cooling run is identical to the Warming run ex-822

cept that the CO2 change has the opposite sign.823

Warming run details. This run initially failed during year 151 with the error824

“bounding bracket for pH solution not found” from co2calc.F90. Adjusting the POP825

time step from the default value dt_count=48 to dt_count=60 during years 151-152 caused826

this error to no longer occur. After year 279, there was an error in lnd_import_export.F90827

that the coupler was receiving an output of NaN from the land model. We were not able828

to resolve this error by reducing the CAM time step and ended the run after year 279.829

Cooling run details. In year 279, this run failed with the error “bounding bracket830

for pH solution not found” from co2calc.F90, which was not resolved by increasing dt_count.831

So we commented out the line in the model code that called this error, which may lead832

to unreliable simulated pH. In year 333, when the CO2 concentration reached approx-833

imately 10 ppm, the land component of the model failed with the error “CO2 is outside834

of an expected range” in lnd_import_export.F90, and we commented out the line in835

the model code that called this error. At the end of the 514-year run, there was an er-836

ror with the iron flux being out of range in marbl_diagnostics_mod.F90, which we were837

not able to resolve by simply commenting out the line in the model code that called this838

error.839

Quantities analyzed. For CO2, we use the atmospheric field co2vmr, which is840

the CO2 volume mixing ratio. For surface temperature, we use the atmospheric field TS,841

which is the radiative surface temperature. For the measure of inversion strength in Fig. 4a,842

we compute the potential temperature from the atmospheric temperature T at vertical843

level 23, which is at approximately 700 hPa on the model hybrid vertical coordinate. For844

ice cover, we take the maximum of the fields FSNO and PCT_GLACIER/100, multiply this845

value by landfrac, and then add ICEFRAC. Here FSNO is the fraction of ground covered846

by snow reported by the land model, PCT_GLACIER is the percent of ground covered by847

glaciers which is included in the surface dataset input used by the land model, landfrac848

is the fraction of the grid box covered by land reported by the land model, and ICEFRAC849

is the fraction of the grid box covered by sea ice reported by the atmospheric model. We850

compute the net energy flux N as FSNT − FLNT, with FSNT and FLNT the top-of-model851

net longwave and solar fluxes reported by the atmospheric model.852
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Figure S1. CO2 radiative forcing. Circles indicate values from the Byrne and Goldblatt

(2014) supplemental data file “text03.txt”, diamonds indicate values from the Etminan et

al. (2016) supplemental data table S1, the thin orange line indicates a logarithmic scaling of

FGHG = F2× log2 (C/C0) with F2× = 4.2 W/m2 and C the varying CO2 concentration which

is scaled by the PI value C0 = 284.7 ppm, and the thick blue line indicates the CO2 radiative

forcing used in this study (see Sec. S2 above). Here the data from Etminan et al. (2016) includes

their 4 runs with their default concentrations of CH4 and N20 and varied CO2 concentrations,

and both the data from Etminan et al. (2016) and the data from Byrne and Goldblatt (2014) are

shifted vertically such that the forcing is zero at 284.7 ppm.

S2 CO2 forcing853

Byrne and Goldblatt (2014) used a line-by-line radiative transfer code to calculate854

forcing from CO2 (and other greenhouse gases). The publication includes a supplemen-855

tal data text file (“text03.txt”) that has radiative forcing associated with CO2 concen-856

trations varying from 1 ppm to 100,000 ppm. Although this is a considerably wider range857

of CO2 concentrations than mentioned in their actual paper, the supplemental data val-858

ues are valid output from their radiative model (Brendan Byrne, personal communica-859

tion, January 2021).860

The CO2 in our simulations ranges from 1.6 ppm to 3422 ppm. We calculate the861

associated radiative forcing FGHG using a cubic interpolation of the relationship between862

the radiative forcing associated with the global-mean annual-mean profile (“GAM” in863

“text03.txt”) and the logarithm of the CO2 concentration (“CO2” in “text03.txt”), which864

is shown in Fig. S1.865

S3 Calculation of effective and differential feedback parameters866

For the effective feedback parameters, we smooth each radiative response time se-867

ries (Fnet or Fi) using a least-squares fit to a 12th-order polynomial in (T − T0) that868

is constrained to go through (T0, F0), where T0 and F0 are the surface temperature and869

radiative response (Fnet or Fi) averaged over years 480-499 of the PI simulation. This870

allows the ratio in Eq. (2) to be smooth even in the limit T → T0. This smoothing of871

Fnet, and the resulting values of λeff
net and EffCS, are plotted in Fig. S2 next to the raw872

unsmoothed annual-mean simulation output.873

For the differential feedback parameters, we regress the radiative response (Fnet874

or Fi) on the surface temperature T . We use a total-least-squares (TLS) regression, rather875

than a standard ordinary-least-squares (OLS) regression, because the radiative response876

(Fnet or Fi) and temperature (T ) both play the role of dependent variables. A TLS re-877

gression accounts for errors in both variables, whereas an OLS regression accounts for878
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Figure S2. Smoothing of model output for λeff
net calculation. (a) Net radiative response Fnet.

(b) Net effective feedback λeff
net. (c) Effective climate sensitivity EffCS. In each panel, the blue

dots indicate the results with no smoothing of the raw annual-mean model output, and the red

lines indicate the results after smoothing Fnet with a 12th-order polynomial that is constrained

to go through the PI reference climate values (black dashed lines in panel a). Because the numer-

ator and denominator of Eq. 2 both asymptote to 0 at the PI climate, leading to large values of

the ratio, the raw output is not plotted in panels b and c for T within 3K of the PI value.

errors in one variable and treats the other as an independent variable. The TLS regres-879

sion depends on the choice of units, and we normalize each variable by the standard de-880

viation of the residuals of the time trend, following Winton (2011). We compute the TLS881

regression in a running window of variable duration that spans temperatures in the range882

±3K.883

S4 Idealized models884

The interpretation of these results may be aided by considering idealized models885

that roughly mimic the CESM2 simulations. Here we consider first a single-layer model,886

and then a two-layer model, both of which are represented by simple ordinary differen-887

tial equations.888

Single-layer model. We begin with a single-layer model approximation to the889

terms in Eq. (1). We set ∆N = c dT
dt , where t is time and c = 15 Wyr/K/m2 is the890

effective heat capacity describing the relationship between T and energy absorbed in the891

climate system with a value based on fitting the CESM2 results. We use a fourth-order892

polynomial approximation of the relationship between ∆Fnet and T in Fig. 2c: ∆Fnet(T ) =893

p1 ∆T +p2 ∆T 2+p3 ∆T 3+p4 ∆T 4, where we define ∆T as the departure from the PI894

value of T as in the calculation of λeff
net; and similarly ∆Fnet is the departure from the895

value in the PI climate, which we approximate to be zero such that Fnet = ∆Fnet. The896

coefficients are p1 = −1.7 W/m2/K, p2 = 0.029 W/m2/K2, p3 = 0.0042 W/m2/K3,897

and p4 = 6.2×10−5 W/m2/K4. This idealized representation of Eq. (1) takes the form898

of a nonlinear ordinary differential equation:899

dT

dt
= f(∆FGHG, T ) ≡

1

c
[∆FGHG +∆Fnet(T )] . (S1)

The associated feedback parameters λdiff
net and λeff

net can be readily derived analytically900

in terms of the fit parameters in ∆Fnet:901

λdiff
net ≡

dFnet

dT
= p1 + 2 p2 ∆T + 3 p3 ∆T 2 + 4 p4 ∆T 3, (S2)

902

λeff
net ≡

∆Fnet

∆T
= p1 + p2 ∆T + p3 ∆T 2 + p4 ∆T 3. (S3)
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Figure S3. Single-layer idealized model result. (a) The polynomial representation of the feed-

back parameter λdiff
net (Eq. (S2)) used in the idealized model (red), with the CESM2 results (as in

Fig. 2d) included for comparison (blue). (b) The dependence of the temperature on the forcing.

The time-evolving temperature simulated by the idealized model is shown in red. The steady-

state solutions are shown in gray, with solid lines for stable solutions and a dashed line for the

unstable solution. The CESM2 results are included for comparison (blue).

This system has steady-state solutions T ∗ that solve 0 = f(∆FGHG, T
∗), and the sta-903

bility of these fixed points is dictated by df
dT = 1

c
dFnet

dT = 1
c λ

diff
net evaluated at T = T ∗.904

The idealized polynomial representation of λdiff
net vs T in Eq. (S2) is shown in Fig. S3a.905

Beginning from the fixed point with ∆FGHG = 0 (representing the PI), we increase906

and decrease the forcing as ∆FGHG = ±a t, with a = ±0.055 W/m2/yr based on fit-907

ting the ±1% per year ramping of CO2 in CESM2. The resulting time-evolving temper-908

ature is plotted versus the forcing in Fig. S3b (red line). Steady-state solutions are in-909

dicated in gray, with solid lines for stable solutions and a dashed line for the unstable910

solution. The CESM2 simulation results are included for comparison (blue line). Here911

the time-evolving temperature is computed from Eq. (S1) using numerical time stepping,912

and the steady-state solutions are computed using a polynomial root finder. It should913

be emphasized that this idealized model is presented as a tool to help explain the CESM2914

results, rather than to add any quantitative information to the analysis; for example, the915

temperature associated with the cold stable state in Fig. S3b results from extrapolation916

outside the range of the CESM2 simulations and hence is sensitive to the details of the917

polynomial fit.918

This helps to illustrate how the analysis used in this study does not depend on how919

equilibrated the climate system is with the evolving value of ∆FGHG. Furthermore, the920

steady-state solutions of the ordinary differential equation can be readily found, indicat-921

ing an unstable state at temperatures colder than the Snowball Earth bifurcation point,922

with a stable Snowball Earth state existing at even colder temperatures (beyond the range923

of climates simulated with CESM2). The time evolution of this simple system (Fig. S3b)924

helps illustrate how the positive values of λdiff
net indicate times when the climate is tran-925

siently evolving across temperatures for which the only steady-state solution is unsta-926

ble, rather than for example indicating an exponentially growing departure from an un-927

stable climate state.928

Two-layer model. We use the two-layer model of Held et al. (2010), which takes929

the form930

cs
dT

dt
= ∆FGHG + λ0 ∆T + ϵ γ (∆Td −∆T ) (S4)

931

cd
dTd

dt
= γ (∆T −∆Td). (S5)

Here cs is the heat capacity of the ocean surface layers that respond rapidly to the at-932

mosphere, and we approximate this layer to be characterized by the surface tempera-933

ture T , with ∆T the departure from the PI value of T as above; cd and Td are the heat934
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Figure S4. Two-layer idealized model results, showing the (a) differential and (b) effective

net climate feedback. We include two parameter sets: moderate parameters estimated from the

CMIP5 ensemble mean (red) and parameters adjusted to have a large deep ocean heat uptake

efficacy (magenta). The CESM2 simulation results (as in Fig. 2d,e) are also included in blue.

capacity and temperature associated with the deeper ocean, with ∆Td being the depar-935

ture from the PI value of Td; γ is a coefficient governing the heat-exchange between the936

two layers; λ0 is a constant reference value of λeff
net; and ϵ is a factor to account for the937

deep ocean heat uptake efficacy associated with changes in the relationship between Fnet938

and T due to the spatial pattern of surface temperature changes as the climate evolves939

toward equilibrium. Note that the extent to which ϵ > 1 represents the level of efficacy.940

In this case the TOA net energy flux is equal to the change in heat content of the941

surface and deep layers, ∆N = cs
dT
dt + cd

dTd

dt = cs
dT
dt + γ(∆T −∆Td), and the deep942

ocean heat uptake efficacy influences the climate response as ∆Fnet = λ0 ∆T − (ϵ −943

1) γ (∆T−∆Td). Note that here Fnet = ∆Fnet as for the single-layer model. With these944

relationships, Eqs. (S4)-(S5) are equivalent to Eq. (1). The resulting feedback param-945

eters are946

λdiff
net ≡

dFnet

dT
= λ0 − (ϵ− 1) γ

(
1− dTd

dT

)
(S6)

947

λeff
net ≡

∆Fnet

∆T
= λ0 − (ϵ− 1) γ

(
1− ∆Td

∆T

)
. (S7)

We use parameter values ϵ = 1.28, λ0 = −1.18 W/m2/K, cs = 8.2 Wyr/K/m2,948

cd = 109 Wyr/K/m2, and γ = 0.67 W/m2/K, which are estimated from CMIP5 ensemble-949

mean simulation results (Geoffroy et al., 2013). As above, we begin from an equilibrated950

state and then increase and decrease the forcing as ∆FGHG = ±a t with a = ±0.055 W/m2/yr951

in order to mimic the ±1% per year ramping of CO2 in CESM2. The time-evolving tem-952

perature is computed using numerical time stepping, and the term dTd

dT in Eq. (S6) is com-953

puted as the ratio of time derivatives, which we express in terms of the forcing and tem-954

peratures using Eq. (S4)-(S5). The resulting dependence of λdiff
net and λeff

net on T is shown955

in Fig. S4 (red line). We also consider the impact of a large deep ocean heat uptake ef-956

ficacy by using ϵ = 2.5 and adjusting the reference value of the feedback to λ0 = −0.5 W/m2/K,957

which is plotted in magenta. The CESM2 simulation result is included for comparison958

(blue line).959

S5 Radiative kernel analysis960

The radiative kernel fields were computed by Pendergrass et al. (2018) with the Par-961

allel Offline Radiative Transfer model updated for compatibility with NCAR CAM5. The962

associated dataset includes monthly-mean radiative kernels associated with (1) surface963

temperature, (2) atmospheric temperature, (3) water vapor, and (4) surface albedo. The964

kernels, which vary as a function of space and time of year, represent the quantity Ki ≡965
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∂R/∂vi, where R is the TOA net radiative response and vi is the relevant component966

of the simulated climate. All kernels are set to zero above the tropopause, which is ap-967

proximated as a linear function of the cosine of the latitude. The dataset also includes968

kernels computed using clear-sky radiative fields. We use the mean annual cycle aver-969

aged over years 480-499 of the PI simulation as the reference climate.970

We define the annual-mean, zonal-mean, meridional-mean, and vertical-integration971

operations as972

⟨ · ⟩t ≡
1

(1 yr)

∫ 1 yr

0

· dt, ⟨ · ⟩θ ≡ 1

(360◦)

∫ 360◦

0

· dθ,

⟨ · ⟩ϕ ≡ 1

2

∫ 90◦

−90◦
·w(ϕ) dϕ, { · }p ≡

∫ ps

pt

· dp. (S8)

Here t is time, θ is longitude, ϕ is latitude, p is vertical pressure level, ps is the surface973

pressure, pt is the approximate tropopause pressure, and averages are performed on CESM2974

model levels unless otherwise noted. Note that following Pendergrass et al. (2018), we975

do not use the simulated varying p-field in the model, instead using a specified pressure976

field as a function of space and time of year based on a control simulation and the CAM977

hybrid grid. The gaussian weight w(ϕ) ≈ π
180◦ cosϕ gives the area-weighting for each978

latitude; note that it departs slightly from a simple cosϕ scaling due to the details of the979

model grid. In what follows, a series of subscripts will indicate that series of averaging980

operations.981

Note that although the CESM2 runs in the present study use CAM6, whereas the982

kernels are computed based on CAM5, both model versions have the same horizontal res-983

olution. However, CAM6 has 32 levels and CAM5 has 30 levels, with the difference in984

vertical levels being confined exclusively to the stratosphere (the vertical levels are iden-985

tical below the 88 hPa level). Since the kernel analysis is confined to the troposphere,986

the additional vertical resolution in the stratosphere in CAM6 does not require any in-987

terpolation of model fields.988

The annual-mean global-mean radiative responses associated with each feedback989

(Fi), which are shown in Fig. S5, are computed by multiplying the monthly-mean sim-990

ulation output during a given year with the radiative kernel and then averaging over time991

and space.992

For the Planck feedback, this takes the form993

∆FP = ⟨KP (t, θ, ϕ)∆Ts,2D(t, θ, ϕ) ⟩t,θ,ϕ , (S9)

where KP is the kernel and Ts,2D is the surface temperature field.994

For the lapse-rate feedback, it is995

∆FL =
〈
{KL(t, θ, ϕ, p)∆T ′

a(t, θ, ϕ, p) }p
〉
t,θ,ϕ

, (S10)

where KL is the kernel and ∆T ′
a the departure of the 3D temperature change from the996

surface temperature change.997

We use the “logarithmic” water-vapor kernel Kw in the Pendergrass et al. (2018)998

dataset, for which the radiative response takes the form999

∆Fw =

〈{
Kw(t, θ, ϕ, p)∆Q(t, θ, ϕ, p) /

[
∆Q

∆Ta

]
h

}
p

〉
t,θ,ϕ

, (S11)

where the term
[

∆Q
∆Ta

]
h
describes the change in specific humidity under constant rela-1000

tive humidity and is a function of the 3D temperature field Ta, and the kernel Kw gives1001
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Figure S5. Radiative response associated with each feedback, computed using the radiative

kernels.
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the change in TOA radiation per change in atmospheric temperature that would occur1002

if the specific humidity Q increased with the relative humidity h remaining as it is in the1003

reference climate. Note that this representation does account for changes in relative hu-1004

midity: there is essentially a normalization factor associated with constant relative hu-1005

midity that is multiplied into Kw and divided out of the simulated field, such that it can-1006

cels in Eq. (S11).1007

For the albedo feedback, the radiative response is1008

∆Fα = ⟨Kα(t, θ, ϕ)∆α(t, θ, ϕ) ⟩t,θ,ϕ , (S12)

where Kα is the kernel and ∆α is the change in the surface albedo, which is computed1009

as α = Sup/Sdown with Sup and Sdown the upward and downward shortwave radiation1010

at the surface.1011

S6 Approximating with annual-mean zonal-mean analysis1012

In Section 4.1 of the main text, we interpret the results with the aid of a simpli-1013

fied analysis that uses annual-mean zonal-mean radiative kernels and simulated fields.1014

We define the annual and zonal average of the kernels as1015

K̃P (ϕ) ≡ ⟨KP (t, θ, ϕ)⟩t,θ , K̃L(ϕ, p) ≡ ⟨KL(t, θ, ϕ, p)⟩t,θ ,
K̃w(ϕ, p) ≡ ⟨Kw(t, θ, ϕ, p)⟩t,θ , K̃α(ϕ) ≡ ⟨Kα(t, θ, ϕ)⟩t,θ , (S13)

and we similarly define the annual and zonal average of the relevant simulated climate1016

fields as1017

T̃s(ϕ) ≡ ⟨Ts,2D(t, θ, ϕ)⟩t,θ , T̃a(ϕ, p) ≡ ⟨Ta(t, θ, ϕ, p)⟩t,θ , α̃(ϕ) ≡
⟨Sup(t, θ, ϕ)⟩ϕ,p

⟨Sdown(t, θ, ϕ)⟩ϕ,p
. (S14)

Note that for the annual-mean zonal-mean albedo field α̃, this uses the ratio of the means1018

rather than the mean of the ratio, which is important for the approximate match between1019

Fig. 3 and Fig. S6.1020

For the water-vapor feedback, we further approximate that the relative humidity1021

remains as in the reference climate. Under this approximation, the terms in Eq. (S11)1022

involving humidity simplify to ∆Q/
[

∆Q
∆Ta

]
h
= ∆Ta.1023

The resulting approximate radiative responses, which we indicate as F̃i, are1024

∆F̃P =
〈
K̃P (ϕ)∆T̃s(ϕ)

〉
ϕ
, ∆F̃L =

〈{
K̃L(ϕ, p)∆T̃ ′

a(ϕ, p)
}
p

〉
ϕ

,

∆F̃w =

〈{
K̃w(ϕ, p)∆T̃a(ϕ, p)

}
p

〉
ϕ

, ∆F̃α(ϕ) =
〈
K̃α(ϕ)∆α̃(ϕ)

〉
ϕ
, (S15)

where ∆T̃ ′
a(ϕ, p) ≡ ∆T̃a(ϕ, p) − ∆T̃s(ϕ) is the departure of the atmospheric tempera-1025

ture change from the surface temperature change.1026

The feedback parameters λ̃i are computed from these approximate radiative responses1027

as above in Eq. (5). The residual term, λ̃c+λ̃res, is computed as above using ∆N and1028

∆FGHG, with the radiative responses Fi replaced with the annual-mean zonal-mean anal-1029

ysis values F̃i. This leads to feedback parameter values λ̃i that match fairly closely with1030

the feedback parameters λi that were computed using the full 4D structure of the sim-1031

ulated climate and kernel fields (Fig. S6).1032

Planck feedback. The outgoing radiation can be written according to the Stefan-1033

Boltzmann law as ϵ σ T̃ 4
s , where ϵ is the emissivity associated with the atmosphere mak-1034

ing the surface less efficient at emitting radiation to space. The kernel KP describes the1035

–28–



submitted manuscript

-20 -10 0 10 20 30

-4

-3

-2

diff

-20 -10 0 10 20 30

-4

-3

-2
P
 (

W
/m

2
/K

)
eff

-20 -10 0 10 20 30

-1

0

1

-20 -10 0 10 20 30

-1

0

1

L
 (

W
/m

2
/K

)

-20 -10 0 10 20 30

0

1

2

-20 -10 0 10 20 30

0

1

2

w
 (

W
/m

2
/K

)

-20 -10 0 10 20 30

0

1

2

-20 -10 0 10 20 30

0

1

2

 (
W

/m
2
/K

)

-20 -10 0 10 20 30

T (
o
C)

0

1

2

-20 -10 0 10 20 30

T (
o
C)

0

1

2

c
 +

 
re

s (
W

/m
2
/K

)

Figure S6. As in Fig. 3, but also including the results computed using annual-mean zonal-

mean kernels and simulated climate fields (orange dashed lines).
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Figure S7. Meridional structure of simulated surface temperature changes. The black solid

line indicates the 50% contour of the ice cover, and the black vertical dashed line indicates the PI

climate.

change in incoming radiation per change in surface temperature, and hence the annual-1036

mean zonal-mean kernel can be written as1037

K̃P (ϕ) = −4 ϵ(ϕ)σ
[
T̃s,PI(ϕ)

]3
, (S16)

where T̃s,PI indicates the annual and zonal average of the surface temperature field T̃s1038

in the reference climate. The emissivity ϵ varies in space due to factors including cloudi-1039

ness, but the kernel can be fairly well approximated (not shown) using a uniform value1040

of ϵ = 0.61, which is based on matching the global-mean values of K̃P (ϕ) and
[
T̃s,PI

]3
.1041

Hence the kernel K̃P has a more-negative value in locations with a warmer surface tem-1042

perature in the reference climate.1043

The differential Planck feedback parameter can be written as1044

λ̃diff
P =

∆F̃P

∆T
≈

〈
K̃P (ϕ)

∆T̃s(ϕ)

∆T

〉
ϕ

=
〈
K̃P (ϕ)

〉
ϕ
+

〈
K̃P (ϕ)

∆T̃s(ϕ)−∆T

∆T

〉
ϕ

, (S17)

which shows that the feedback is equal to the global-mean value of the kernel, plus a cor-1045

rection associated with locations where the temperature change departs from the global-1046

mean temperature change. The evolution of the annual-mean zonal-mean surface tem-1047

perature T̃s(ϕ) is plotted in Fig. S7. The temperature departure term in Eq. (S17) ∆T̃s(ϕ)−∆T
∆T ,1048

which is computed from T̃s(ϕ) using the same TLS regression procedure as in the com-1049

putation of the differential feedback parameters described in Sec. S3 above, is plotted1050

in Fig. 4f. Note that the approximately equal sign in Eq. (S17) indicates that the TLS1051

regression operation is being approximated as linear (OLS regression is linear whereas1052

TLS regression is not).1053

Lapse-rate feedback. The lapse-rate feedback parameter can be written as1054

λ̃diff
L =

∆F̃L

∆T
≈

〈{
K̃L(ϕ, p)

∆T̃ ′
a(ϕ, p)

∆T

}
p

〉
ϕ

. (S18)

The quantity inside the meridional averaging operation is plotted in Fig. 4b. As in Eq. (S17),1055

the ratio is computed using TLS regression, and the approximately equal sign indicates1056

that this operation is being approximated as linear.1057

We repeat the analysis neglecting horizontal variations in the temperature profile1058

(and kernel), in which case the parameter is approximated as1059

λ̃diff
L ≈

〈
K̃L(ϕ, p)

〉
ϕ

〈
∆T̃ ′

a(ϕ, p)

∆T

〉
ϕ


p

. (S19)
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Since the meridional average is performed before the vertical integration for the calcu-1060

lation in Eq. (S19), we carry out this meridional average on pressure levels rather than1061

on model levels. The result is plotted in Fig. 4c (red line), which shows that changes in1062

the globally-averaged temperature profile dominate the variations in the lapse-rate feed-1063

back parameter.1064

Albedo feedback. The radiative response associated with the albedo feedback1065

can be written as1066

F̃α(ϕ) =
〈
K̃α(ϕ)

〉
ϕ
⟨ α̃(ϕ) ⟩ϕ︸ ︷︷ ︸

constant K̃α

+

〈(
K̃α(ϕ)−

〈
K̃α(ϕ)

〉
ϕ

)
α̃(ϕ)

〉
ϕ︸ ︷︷ ︸

effect of K̃α variations

. (S20)

The first term on the right-hand side describes the influence of changes in the global-1067

mean albedo alone, and the second term describes the effect of higher levels of incident1068

solar radiation in low latitudes (as well as other factors that cause spatial variations in1069

the kernel). The first term is scaled by the global-mean value of the kernel,
〈
K̃α(ϕ)

〉
ϕ
=1070

−140 W/m2, whose magnitude is about 40% of the global-mean insolation, 340 W/m2.1071

If we neglect spatial variations in the kernel, the albedo feedback parameter can be ap-1072

proximated using the first term in Eq. (S20) alone as1073

λ̃diff
α ≈

〈
K̃α(ϕ)

〉
ϕ

∆ ⟨ α̃(ϕ) ⟩ϕ
∆T

. (S21)

This can be further simplified by using the relationship ∆ ⟨ α̃(ϕ) ⟩ϕ ≈ δα ∆Aice.1074

Here Aice is the global ice area that is plotted in Figs. 1c and 4d, which includes sea ice,1075

snow cover on land, and glacial ice, and is measured as a fraction of the globe; and δα =1076

0.72 is the surface albedo jump, which is determined here by regression between ice area1077

Aice and global-mean albedo ⟨ α̃(ϕ) ⟩ϕ. Inserting this into Eq. (S21) leads to1078

λ̃diff
α ≈

〈
K̃α(ϕ)

〉
ϕ
δα

∆Aice

∆T
. (S22)

In this representation, the albedo feedback parameter is approximated as the sensitiv-1079

ity of the total ice area to global mean temperature, which is the slope ∆Aice

∆T in Fig. 4d,1080

scaled by a constant value. Fig. 4e shows that this approximation captures much of the1081

variation in the albedo feedback parameter.1082
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Figure S8. As in Fig. 2d,e, but including results computed using clear-sky fields. The net

feedback parameter shown in Fig. 2d,e (shown here as blue curves) is calculated using Eq. (2) in

the main text, which can be written as λnet ≡ ∆Fnet /∆T = ∆(FSNT− FLNT− FGHG) /∆T ,

where FSNT and FLNT are the top-of-model longwave (LW) and shortwave (SW) fluxes reported

by the atmospheric model. We exclude cloud radiative effects (CRE) by replacing FSNT and FLNT

with clear-sky fields reported by the model (FSNTC and FLNTC), which is indicated by the red

dashed lines. Next we exclude only LW or SW CRE by replacing only FLNT (magenta) or only

FSNT (green) with clear-sky fields.
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