Is Arctic Sea Ice Approaching a Tipping Point?

Because sea ice has a high reflectivity (i.e., albedo) to solar radiation, the increased area of open water that is exposed as sea ice recedes leads to an increase in absorbed solar radiation, thereby contributing to further loss of ice. In light of the observed rapid retreat of arctic sea-ice area during recent decades, the possibility this ice-albedo feedback may drive an irreversible tipping point has garnered considerable attention. The focus has typically been centered on the annual minimum sea-ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback due to its occurrence at the end of summer. The results of our analysis, however, suggest that such a tipping point should not occur before the climate has warmed sufficiently that the Arctic Ocean is ice-free during much of the year.

We assessed the possibility of a sea-ice tipping point by examining the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. Starting with the basic physical equations that describe the thermodynamics of a column of sea ice, radiative transfer in the atmosphere above, and a thermodynamic ocean mixed layer, we used a series of standard mathematical approximations to arrive at an idealized representation of the seasonally varying arctic sea ice, ocean, and atmosphere system. Next, we performed a bifurcation analysis on the model to look for threshold behavior involving sudden jumps.

Our analysis rests on basic facts regarding heat conduction and phase changes. During polar winter, heat from the ocean diffuses upward through the ice to the frigid atmosphere above, causing solidification of seawater at the base of the ice. Because this process is more effective for thinner ice, thin ice grows far more rapidly than thick ice. This represents a strong stabilizing feedback for the sea ice cover: the more the ice cover is thinned by a warming perturbation, the more rapidly it grows back.

As arctic sea ice becomes thinner and more ocean water is exposed in a warming climate, we find that there is a competition between the destabilizing ice-albedo feedback and the stabilizing feedback associated with ice thickness. During the initial transition from a perennially ice-covered Arctic Ocean to seasonally ice-free conditions, thin sea ice covers the ocean for most of the year, giving the ice thickness feedback the upper hand. But as the climate is further warmed, a point occurs when there is ice cover during a sufficiently short portion...
BARBECUE SUMMER RAINED OUT

If the British Met Office had a foot, it would probably be stuck in its mouth. Soon after it issued a forecast that there was a 65% chance the summer would be warmer and sunnier than average, it began to rain. The phrase initially used, “odds on for a barbecue summer,” caught on in the media. After double the monthly average of rain fell in July, the agency likely was as miserable as those looking for a sunny summer. The discontent with the Met Office increased when a senior forecaster said he felt “in his bones” the weather would improve in September. “The Met Office gets about 83 million pounds ($138 million) a year from you and me,” wrote Daily Telegraph columnist Benedict Brogan in his blog. “We’re paying 83 million pounds for bone-based weather detection?” In early August the Met Office revised its forecast for the month, to above-average rainfall, and claimed that it did not forecast the summer to be a “scorcher.” (Source: The Associated Press)

Our results suggest that an irreversible tipping point brought on by the ice-albedo feedback is unlikely in the hotly debated discussion regarding an imminent approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, a critical threshold associated with the sudden loss of the remaining wintertime-only sea-ice cover may potentially be likely. Further details are online at http://gps.caltech.edu/~ian/publications/Eisenman-Wettlaufer-2009.html.—IAN EISENMAN (CALIFORNIA INSTITUTE OF TECHNOLOGY/UNIVERSITY OF WASHINGTON) AND J. S. WETTLAUFER. “Is Arctic Sea Ice Approaching a Tipping Point?” presented at the 10th Conference on Polar Meteorology and Oceanography, 18–21 May 2009, Madison, Wisconsin.

of the year that the ice-albedo feedback wins out and all the ice rapidly disappears. This is an “irreversible process” in the sense that the ocean will only refreeze after the climate has cooled to a considerably colder level than the point at which the ice initially disappeared.