Journal Articles

[See also: Google Scholar profile, Scripps research profile, Curriculum Vitae]

[Members of group are underlined.]

2024

I. Eisenman, A. Basinski-Ferris, E. Beer, and L. Zanna (2024). The sensitivity of regional sea level changes to the depth of Antarctic meltwater fluxes. Submitted. [pdf]

I. Eisenman and K. Armour (2024). The radiative feedback continuum from Snowball Earth to an ice-free hothouse. Accepted, Nature Communications. [pdf]

M. Luongo, N. Brizuela, I. Eisenman, and S.-P. Xie (2024). Retaining short-term variability reduces mean state biases in wind stress overriding simulations. Journal of Advances in Modeling Earth Systems 16, e2023MS003665. [pdf]

D. Bonan, N. Feldl, N. Siler, J. Kay, K. Armour, I. Eisenman, and G. Roe (2024). The influence of climate feedbacks on regional hydrological changes under global warming. Geophysical Research Letters 51, e2023GL106648. [pdf]

2023

H.-Y. Tseng, Y.-T. Hwang, S.-P. Xie, Y.-H. Tseng, S. Kang, M. Luongo, and I. Eisenman (2023). Fast and slow responses of the tropical Pacific to radiative forcing in northern high latitudes. Journal of Climate 36, 5337–5349. [pdf]

E. Beer, I. Eisenman, T.J.W. Wagner, and E. Fine (2023). A possible hysteresis in the Arctic Ocean due to release of subsurface heat during sea ice retreat. Journal of Physical Oceanography 53, 1323-1335. [pdf]

L. Roach, I. Eisenman, T.J.W. Wagner, and A. Donohoe (2023). Asymmetry in the seasonal cycle of zonal-mean surface air temperature. Geophysical Research Letters 50, e2023GL103403. [pdf]

Y. Si, A. Stewart, and I. Eisenman (2023). Heat transport across the Antarctic Slope Front controlled by cross-slope salinity gradients. Science Advances 9, eadd7049. [pdf]

M. Luongo, S.-P. Xie, I. Eisenman, Y.-T. Hwang, and H.-Y. Tseng (2023). A pathway for Northern Hemisphere extratropical cooling to elicit a tropical response. Geophysical Research Letters 50, e2022GL100719. [pdf]

2022

M. England, I. Eisenman, and T.J.W. Wagner (2022). Spurious climate impacts in coupled sea ice loss simulations. Journal of Climate 35, 3801-3811. [pdf]

M. Luongo, S.-P. Xie, and I. Eisenman, (2022). Buoyancy forcing dominates cross-equatorial ocean heat transport response to Northern Hemispheric cooling. Journal of Climate 35, 3071-3090. [pdf]

Y. Si, A. Stewart, and I. Eisenman (2022). Coupled ocean/sea ice dynamics of the Antarctic Slope Current driven by topographic eddy suppression and sea ice momentum redistribution. Journal of Physical Oceanography 52, 1563-1589. [pdf]

T.J.W. Wagner, I. Eisenman, A. Ceroli, and N. Constantinou (2022). How winds and ocean currents influence the drift of floating objects. Journal of Physical Oceanography 52, 907-916. [pdf] [mention in a news piece]

E. Beer and I. Eisenman (2022). Revisiting the role of the water vapor and lapse rate feedbacks in the Arctic amplification of climate change. Journal of Climate 35, 2975-2988. [pdf]

L. Roach, I. Eisenman, T.J.W. Wagner, E. Blanchard-Wrigglesworth, and C. Bitz (2022). Asymmetry in the seasonal cycle of Antarctic sea ice driven by insolation. Nature Geoscience 15, 277-281. [pdf]

L. Hahn, K. Armour, D. Battisti, I. Eisenman, and C. Bitz (2022). Seasonality in Arctic warming driven by sea ice effective heat capacity. Journal of Climate 35, 1629-1642. [pdf]

X. Zhang, T. Schneider, Z. Shen, K. Pressel, and I. Eisenman (2022). Seasonal cycle of idealized polar clouds: large eddy simulations driven by a GCM. Journal of Advances in Modeling Earth Systems 14, e2021MS002671. [pdf]

2021

T.J.W. Wagner, I. Eisenman, and H. Mason (2021). How sea ice drift influences sea ice area and volume. Geophysical Research Letters 48, e2021GL093069. [pdf]

D. Bonan, T. Schneider, I. Eisenman, and R. Wills (2021). Constraining the date of a seasonally ice-free Arctic using a simple model. Geophysical Research Letters 48, e2021GL094309. [pdf]

M. England, I. Eisenman, N. Lutsko, and T.J.W. Wagner (2021). The recent emergence of Arctic Amplification. Geophysical Research Letters 48, e2021GL094086. [pdf]

S. Sun and I. Eisenman (2021). Observed Antarctic sea ice expansion reproduced in a climate model after correcting biases in sea ice drift velocity. Nature Communications 12, 1060. [pdf] [a news piece]

A. Evan and I. Eisenman (2021). A mechanism for regional variations in snowpack melt under rising temperature. Nature Climate Change 11, 326-330. [pdf] [news pieces here, here]

2020

M. England, T.J.W. Wagner, and I. Eisenman (2020). Modeling the breakup of tabular icebergs. Science Advances 6, eabd1273. [pdf] [cover image] [mention in news pieces here, here, here]

J. Rae, W. Gray, R. Wills, I. Eisenman, B. Fitzhugh, M. Fotheringham, E. Littley, P. Rafter, R. Rees-Owen, A. Ridgwell, B. Taylor, and A. Burke (2020). Overturning circulation, nutrient limitation, and warming in the Glacial North Pacific. Science Advances 6, eabd1654. [pdf]

K. Golden, L. Bennetts, E. Cherkaev, I. Eisenman, D. Feltham, C. Horvat, E. Hunke, C. Jones, D. Perovich, P. Ponte-Castañeda, C. Strong, D. Sulsky, and A. Wells (2020). Modeling sea ice. Notices Of The American Mathematical Society 67, 1535-1555. [pdf] [cover image]

S. Sun, A. Thompson, and I. Eisenman (2020). Transient overturning compensation between Atlantic and Indo-Pacific basins. Journal of Physical Oceanography 50, 2151-2172. [pdf] [a blog piece]

E. Beer, I. Eisenman, and T.J.W. Wagner (2020). Polar amplification due to enhanced heat flux across the halocline. Geophysical Research Letters 47, e2019GL086706. [pdf] [a research highlight] [a news piece]

S. Sun, I. Eisenman, L. Zanna, and A. Stewart (2020). Surface constraints on the depth of the Atlantic Meridional Overturning Circulation: Southern Ocean versus North Atlantic. Journal of Climate 33, 3125-3149. [pdf]

2019

K. Pistone, I. Eisenman, and V. Ramanathan (2019). Radiative heating of an ice-free Arctic Ocean. Geophysical Research Letters 46, 7474-7480. [pdf] [a research highlight] [a news piece]

2018

T.J.W. Wagner, R. Dell, I. Eisenman, R. Keeling, L. Padman, and J. Severinghaus (2018). Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich Events. Earth and Planetary Science Letters 495, 157-163. [pdf]

S. Sun, I. Eisenman, and A. Stewart (2018). Does Southern Ocean surface forcing shape the global ocean overturning circulation? Geophysical Research Letters 45, 2413-2423. [pdf]

2017

T.J.W. Wagner, A. Stern, R. Dell, and I. Eisenman (2017). On the representation of capsizing in iceberg models. Ocean Modelling 117, 88-96. [pdf]

T.J.W. Wagner and I. Eisenman (2017). How climate model biases skew the distribution of iceberg meltwater. Geophysical Research Letters 44, GL071645. [pdf]

T.J.W. Wagner, R. Dell, and I. Eisenman (2017). An analytical model of iceberg drift. Journal of Physical Oceanography 47, 1605-1616. [pdf]

C. Strong, D. Foster, E. Cherkaev, I. Eisenman, and K. Golden (2017). On the definition and analysis of the width of the marginal ice zone. Journal of Atmospheric and Oceanic Technology 34, 1565-1584. [pdf]

E. Rosenblum and I. Eisenman (2017). Sea ice trends in climate models only accurate in runs with biased global warming. Journal of Climate 30, 6265-6278. [pdf]

2016

E. Rosenblum and I. Eisenman (2016). Faster Arctic sea ice retreat in CMIP5 than in CMIP3 due to volcanoes. Journal of Climate 29, 9179-9188. [pdf]

S. Sun, I. Eisenman, and A. Stewart (2016). The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification. Geophysical Research Letters 43, 8124-8132. [pdf]

J. Jones, S. Gille, H. Goosse, N. Abram, P. Canziani, D. Charman, K. Clem, X. Crosta, C. de Lavergne, I. Eisenman, M. England, R. Fogt, L. Frankcombe, G. Marshall, V. Masson-Delmotte, A. Morrison, A. Orsi, M. Raphael, J. Renwick, D. Schneider, G. Simpkins, E. Steig, B. Stenni, D. Swingedouw, and T. Vance (2016). Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change 6, 917-926. [pdf]

2015

T.J.W. Wagner and I. Eisenman (2015). False alarms: How early warning signals falsely predict abrupt sea ice loss. Geophysical Research Letters 42, 10333-10341. [pdf]

T.J.W. Wagner and I. Eisenman (2015). How climate model complexity influences sea ice stability. Journal of Climate 28, 3998-4014. [pdf] [a research highlight]

2014

J. Zhu, Z. Liu, X. Zhang, I. Eisenman, and W. Liu (2014). Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3. Geophysical Research Letters 41, 6252-6258. [pdf]

R. Ewing, I. Eisenman, M. Lamb, L. Poppick, A. Maloof, and W. Fischer (2014). New constraints on equatorial temperatures during a Late Neoproterozoic snowball Earth glaciation. Earth and Planetary Science Letters 406, 110-122. [pdf]

L. Li, A. Miller, J. McClean, I. Eisenman, and M. Hendershott (2014). Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: anomalies from the mean seasonal cycle. Ocean Dynamics 64, 1693-1717. [pdf]

L. Li, J. McClean, A. Miller, I. Eisenman, M. Hendershott, and C. Papadopoulos (2014). Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: mean seasonal cycle. Ocean Modelling 84, 51-66. [pdf]

I. Eisenman, W. Meier, and J. Norris (2014). A spurious jump in the satellite record: has Antarctic sea ice expansion been overestimated? The Cryosphere 8, 1289-1296. [pdf] [summary slide] [a research highlight] [news pieces here, here, here, here, here]

K. Pistone, I. Eisenman, and V. Ramanathan (2014). Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proceedings of the National Academy of Sciences 111, 3322-3326. [pdf] [summary slide] [news pieces here, here, here, here, here]

2013

T. Merlis, T. Schneider, S. Bordoni, and I. Eisenman (2013). The tropical precipitation response to orbital precession. Journal of Climate 26, 2010-2021. [pdf]

T. Merlis, T. Schneider, S. Bordoni, and I. Eisenman (2013). Hadley circulation response to orbital precession. Part II: Subtropical continent. Journal of Climate 26, 754-771. [pdf]

T. Merlis, T. Schneider, S. Bordoni, and I. Eisenman (2013). Hadley circulation response to orbital precession. Part I: Aquaplanets. Journal of Climate 26, 740-753. [pdf]

2012

I. Eisenman (2012). Factors controlling the bifurcation structure of sea ice retreat. Journal of Geophysical Research—Atmospheres 117, D01111. [pdf]

2011

K. Armour, I. Eisenman, E. Blanchard-Wrigglesworth, K. McCusker, and C. Bitz (2011). The reversibility of sea ice loss in a state-of-the-art climate model. Geophysical Research Letters 38, L16705. [pdf] [a research highlight]

S. Finnegan, K. Bergmann, J. Eiler, D. Jones, D. Fike, I. Eisenman, N. Hughes, A. Tripati, and W. Fischer (2011). The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science 331, 903-906. [pdf] [a news piece]

I. Eisenman, T. Schneider, D. Battisti, and C. Bitz (2011). Consistent changes in the sea ice seasonal cycle in response to global warming. Journal of Climate 24, 5325-5335. [pdf]

2010

Y. Ashkenazy, I. Eisenman, H. Gildor, and E. Tziperman (2010). The effect of Milankovitch variations in insolation on equatorial seasonality. Journal of Climate 23, 6133-6142. [pdf]

D. Abbot, I. Eisenman, and R. Pierrehumbert (2010). The importance of ice vertical resolution for snowball climate and deglaciation. Journal of Climate 23, 6100-6109. [pdf]

I. Eisenman (2010). Geographic muting of changes in the Arctic sea ice cover. Geophysical Research Letters 37, L16501. [pdf] [a research highlight] [a blog piece]

2005 – 2009

I. Eisenman, C. Bitz, and E. Tziperman (2009). Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography 24, PA4209. [pdf] [a research highlight] [a news piece]

I. Eisenman and J.S. Wettlaufer (2009). Nonlinear threshold behavior during the loss of Arctic sea ice. Proceedings of the National Academy of Sciences 106, 28-32. [pdf] [a research highlight] [a news piece]

I. Eisenman, N. Untersteiner, and J.S. Wettlaufer (2008). Reply to comment by E. T. DeWeaver et al. on "On the reliability of simulated Arctic sea ice in global climate models". Geophysical Research Letters 35, L04502. [pdf]

G. Gebbie, I. Eisenman, A. Wittenberg, and E. Tziperman (2007). Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. Journal of the Atmospheric Sciences 64, 3281-3295. [pdf]

I. Eisenman, N. Untersteiner, and J.S. Wettlaufer (2007). On the reliability of simulated Arctic sea ice in global climate models. Geophysical Research Letters 34, L10501. [pdf]

I. Eisenman, L. Yu, and E. Tziperman (2005). Westerly wind bursts: ENSO's tail rather than the dog? Journal of Climate 18, 5224-5238. [pdf] [summary text]

I. Eisenman (2005). Non-normal effects on salt finger growth. Journal of Physical Oceanography 35, 616-627. [pdf] [summary text]

 

Non-refereed

E. Blanchard-Wrigglesworth, I. Eisenman, S. Zhang, S. Sun, and A. Donohoe (2022). New perspectives on the enigma of expanding Antarctic sea ice. Eos 103, https://doi.org/10.1029/2022EO220076. [pdf]

T.J.W. Wagner, R. Dell, and I. Eisenman (2017). The influence of winds versus ocean currents on iceberg drift. Bulletin of the American Meteorological Society 98, 2050-2051. [pdf]

K. Pistone, I. Eisenman, and V. Ramanathan (2014). Reply to Legates et al.: Negligible role of Arctic cloud albedo changes in observed darkening. Proceedings of the National Academy of Sciences 111, E2159-E2159. [pdf]

I. Eisenman and J.S. Wettlaufer (2009). Is Arctic sea ice approaching a tipping point? Bulletin of the American Meteorological Society 90, 1605-1606. [pdf]

G. Gebbie, I. Eisenman, A. Wittenberg, and E. Tziperman (2007). Could ocean-modulated wind bursts lead to better El Niño forecasts? Bulletin of the American Meteorological Society 88, 1356-1357. [pdf]

I. Eisenman (2007). Arctic catastrophes in an idealized sea ice model. In Program of Studies: Ice (Geophysical Fluid Dynamics Program), Woods Hole Oceanog Inst Tech Rept 2007-02. [pdf]

P. Huybers and I. Eisenman (2006). Integrated summer insolation calculations. NOAA/NCDC Paleoclimatology Program, Data Contribution Series #2006-079. [code]

T. Sasseen, I. Eisenman, and K. Mason (2002). New constraints on galaxy evolution from the optical monitor on XMM-Newton. In New Visions of the X-ray Universe in the XMM-Newton and Chandra Era, ed. F. Jansen, European Space Agency SP-488. [pdf]